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ABSTRACT

In this work we consider a numerical method based on control theory [1] to solve the Helmholtz Scattering Problem. The basic idea is to go back from the Helmholtz equation to a wave equation with
initial and boundary condition (IBVP) in order to get a time-harmonic wave solution u(x, t) = v(x)e−iωt, such that u(x, 0) = v(x) solves the Helmholtz Problem. The control problem takes the initial
data as control variables and the wave solution as state, so the goal is to find the initial data such that the state goes back to the initial data at time T = 2π/κ, where κ is the wave number. In order to
solve the control problem, we define a cost function to measure the error between the initial data and the state at time T = 2π/κ. So, we can find the appropriate initial data by minimizing the cost
function through Conjugate Gradient Method. In order to apply the Conjugate Gradient Method, we derive the adjoint equation and the functional derivative.
For numerical simulation, the standard finite element method (Galerkin) was implemented for the spatial discretization and a second order finite difference scheme for time discretization. The results
show that the numerical method based on the control formulation can be an efficient alternative to classical methods.

Background - Mathematical model

Figure 1: General scheme for Scattering

Figure 2: Computational scheme for Scattering

The Helmholtz Scattering Problem is concerned with effects
obstacles have on an incident wave. Consider the Figure 1,
where Ei(x, t) is an incident wave impinging over an obstacle
(scatterer) occupying a domain D ⊂ Rd (d = 2 in our
case). Because interaction between the incident wave and the
scatterer, there will be scattered waves, denoted by Es(x, t)
on the Figure 1. The Direct Scattering Problem consists on
determining the scattered wave Es(x, t) given the incident wave
Ei(x, t) and some physical parameters of the scatterer. In this
work we consider the following hypothesis: 1) The incident
wave is the plane time-harmonic wave, so we have Ei(x, t) =
Aei(k·x−ωt), where A ∈ R+ is the amplitude, k is the wave vector
and ω is the circular frequency. 2) The scattered wave is time-harmonic, but not necessarily
plane, so we have Es(x, t) = v(x)e−iωt, where v(x) is the complex amplitude and becomes the
unknown of the problem. 3) The scatterer is a perfect conductor. With these basic hypothesis,
we obtain the following mathematical model of the Helmholtz Problem:

−∆v− κ2v = 0 in Rd \ D,
v = −Aeik·x on γ = ∂D,

limr→∞ r
d−1

2
(
∂v
∂r − iκv

)
= 0 on Br(0).

(1)

where the third equation is the Bohr-Sommerfeld radiation condition, imposed at infinity in
order to eliminate nonphysical solutions.

Computational model
The model (1) can’t be implemented computationally because the domain Rd\D is unbounded.
In order to get a computational model, we apply a domain truncation, by introducing an
artificial bounded domain Ω ⊂ Rd such that D ⊂ Ω (See Figure 2), and imposing an absorbing
boundary condition on the boundary ∂Ω [2]. So we obtain the following computational model.

−∆v− ω2

c2 v = 0 in Λ = Ω \ D,
v = −Aeik·x on γ,

∂v
∂η − iκv = 0 on Γ = ∂Ω,

(2)

where the third equation is an approximation of the Bohr-Sommerfeld radiation condition and
is known as first order absorbing boundary condition.

Control Formulation

To formulate the Helmholtz problem (2) as a control problem, following [1], it is defined
u(x; t) := v(x)e−iκt where v(x) solves the Helmholtz problem. Then, u(x; t) solves the following
state equation:

utt −∆u = 0 in Q = Λ× [0, 2π
κ ],

u = −Aeik·xe−iκt on σ = γ × [0, 2π
κ ],

∂u
∂t + ∂u

∂η = 0 on Σ = Γ× [0, 2π
κ ],

u(x, 0) = w0 = u(x, 2π
κ ) in Λ,

ut(x, 0) = w1 = ut(x, 2π
κ ) in Λ,

(3)

where [w0,w1] are the control variables. Note that if we get [w0,w1] = [u(x, 0), ut(x, 0)] such
that u(x, 0) = w0 = u(x,T), then v(x) = u(x, 0) = w0 solves the Helmholtz problem (2). Then,
the control problem for the Helmholtz problem can be expressed as: Find the initial data
[w0,w1] such that the solution becomes time-periodic with period T = 2π

κ . The appropriate
function space where the initial data must lies in order to get an exact controllability problem
is given by Lions [3].
In order to impose a quality criterion for the solution in term of a cost function, we associate
to the state equation (3) a minimizing cost function with the form [1]:

J(w, u) ≡ 1
2

∫
Λ

(
|∇(u(x,T)− w0(x))|2 + |ut(x,T)− w1(x)|2

)
dx. (4)

Therefore, the Optimal Control Problem for the Helmholtz problem (2) is expressed as follows:
Minimize the function (4) subject to the state equation (3).
In this work, we will solve the optimal control problem by minimizing the cost function (4)
through Conjugate Gradient Method (CGM).

Gradient of the cost function and the adjoint problem

To implement the CGM we need to be able to compute the gradient of the cost function (4) at
any point of its domain. From the equation (4) we get:

〈J′, v〉 =

∫
Λ

∇(w0 − u(x,T)) · ∇v0 dx−
∫

Λ

pt(x, 0)v0 dx +

∫
Γ

p(x, 0)v0dΓ

+

∫
Λ

(w1 − ut(x,T) + p(x, 0))v1 dx, ∀v ∈ W0,
(5)

where u(x, t) is the solution of (3) with initial data [w0,w1], v = [v0, v1] is a test function and
p(x, t) is the solution of the adjoint problem, which is given by:

∆p− ptt = 0 in Q,
p = 0 on σ,

∂p
∂η −

∂p
∂t = 0 on Σ,

p(x,T) = ut(x,T)− w1 in Λ,∫
Λ(pt(x,T)φ +∇(u(x,T)− w0) · ∇φ) dx =

∫
Γ p(x,T)φ dΓ in Λ.

(6)

So, with the state equation (3), the adjoint equation (6) and the gradient (5) we be able to
implement the CGM algorithm.

Numerical scheme and simulation results

Figure 3: a) Amplitude of v(x) for Case 4; b) Error evolution

Figure 4: a) Amplitude of v(x) for Case 8; b) Error evolution

Figure 5: a) Amplitude of v(x) for Case 12; b) Error evolution

Figure 6: Amplitude of v(x) for Case 19

Figure 7: Amplitude of v(x) for Case 22

Figure 8: Amplitude of v(x) for Case 24

For numerical implementation we consider
a spatial discretization through standard
finite element method (Galerkin) on a
circular domain Ω = {x ∈ R2; ‖x‖ ≤
R} and a circular scatterer D = {x ∈
R2; ‖x‖ ≤ r < R}, where both the radius
r and R are fixed according to the wave
number κ in order to hold 0.5λ ≤ R− r ≤
3λ. To time discretization we consider a
second order finite difference scheme.

Numerical results
Case λ[m] λ/h N ε iter.

4 0.5 10 200 0.04 62
8 0.125 20 200 0.04 36

12 0.125 5 200 0.04 125
Table 1: Iterations of CGM; λ/h = 10, N = 200

Case λ[m] λ/h h/τ ε iter.
19 0.0625 10 5c 0.04 83
22 0.125 20 5c 0.04 37
24 0.125 20 2.5c 0.04 25

Table 2: Iterations of CGM; λ/h ≥ 10, N = variable

The Table 1 shows some cases of numerical
experiments. In these cases we consider
several wavelength and also several mesh
size parameter h. The goal was to prove the
CGM algorithm for several values of λ/h.
The table 2 shows some experiment results
for different values of h/τ . The Figures 3
to 8 shows the amplitude of the solutions of
the Helmholtz equation for all cases shown
in both the Tables 1 and 2. From numerical
experiments, we can conclude that the
method works satisfactorily if λ/h ≥ 10
and h/τ ≥ 5c. In general, the results show
that the numerical method based on the
control formulation appears to be efficient.
The analysis of the proposed method is an
ongoing work.
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